A tetrahedron is a 3-dimensional simplex. Its Bowers acronym is "tet".

### VariantsEdit

The tetrahedron can be seen as a triangle pyramid where all the sides are equal. It is also a line antiprism.

### PropertiesEdit

Two tetrahedra can be inscribed in a cube such that no vetex is used twice.

### StructureEdit

As a triangular pyramid, the tetrahedron is composed of a point that grows into a triangle. It has 3triangles around each vertex.

### See alsoEdit

Zeroth | First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | Tenth | Eleventh | Twelfth | Thirteenth | Fourteenth | Fifteenth | Sixteenth | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Simplex | Point | Line | Triangle | Tetrahedron
| Pentachoron | Hexateron | Heptapeton | Octaexon | Enneazetton | Decayotton | Hendecaxennon | Dodecadakon | Tredecahendakon | Quattuordecadokon | Quindecatradakon | Sexdecateradakon | Septendecapetadakon |

Hypercube | Point | Line | Square | Cube | Tesseract | Penteract | Hexeract | Hepteract | Octeract | Enneract | Dekeract | Undekeract | Dodekeract | Tredekeract | Quattuordekeract | Quindekeract | Sexdekeract |

Cross | Point | Line | Square | Octahedron | Tetrarss | Pentarss | Hexarss | Heptarss | Octarss | Ennearss | Decarss | Hendecarss | Dodecarss | Tredecarss | Quattuordecarss | Quindecatrarss | Sexdecaterarss |

Hypersphere | Point | Line | Circle | Sphere | Glome | Hyperglome | Hexaphere | Heptaphere | Octaphere | Enneaphere | Decaphere | Hendecaphere | Dodecaphere | Tredecaphere | Quattuordecaphere | Quindecatraphere | Sexdecateraphere |